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Chapter 1 

Introduction 

1.1 Motivation 

This work is motivated by the problem of adaptive radar target detection in 
clutter with unknown spectral and statistical characteristics. An important 
problem for the U.S. Air Force is adaptive radar signal processing with applica- 
tions to airborne target detection, wide area surveillance and UAV platforms. 
These applications give rise to a number of open problems which are addressed 
under the framework of adaptive target detection in non-Gaussian interference 
in this effort. A key requirement in these applications is the maintainance of a 
constant false alarm probability. 

1.2 The Radar Environment 

In a typical radar system, the transmitter generates a coded waveform which 
is transmitted in free space. This waveform impinges on one or more targets 
and objects such as buildings, trees, water, and land depending on the operating 
environment. The reflections from a target constitute the desired signal, whereas 
reflections from other objects contribute to the clutter returns. The objective 
is to detect a desired signal embedded in unwanted signals. In practice, target 
detection is inhibited by a combination of clutter, one or more jammers, and 
background white noise. 

The radar receiver front-end consists of an array of antenna elements receiv- 
ing reflection from a source. The received reflection is an electromagnetic plane 
wave propagating in free space. The plane wave impinging on the array induces 
a voltage at each element of the array. The voltage induced at each array ele- 
ment forms the received data. Several snapshots of received data are collected 
either in the form of a data matrix or a concatenated data vector. In many 
instances radars operate at high pulse repetition frequencies, successive snap- 
shots are highly correlated. Consequently, we need to account for the spatial 
and temporal correlation properties of the received data via a suitable model. 



Typically, the spectral characteristics as well as the statistics underlying 
the clutter, jammer, and background noise are unknown. The following three 
important problems arise in this context. 

1. Using the received data, it is necessary to determine whether or not a 
desired target is present. This issue motivates the problem of adaptive 
target detection. 

2. The complex amplitude of the target embeds information pertaining to 
the radar target cross section, in addition to accounting for the dispersive 
effects of the propagating channel. Hence, the target complex amplitude 
needs to be estimated from the received data. This motivates the adaptive 
beamforming problem. 

3. If operating in a hostile environment where one or more jammers are 
present, it is important to estimate the direction of arrival of the inter- 
fering sources with respect to the array normal. The direction of arrival 
estimation helps place nulls in the direction of the jammers. This issue 
motivates the adaptive direction of arrival estimation problem. 

In this report, we concern ourselves with the problem of adaptive radar tar- 
get detection using spatio-temporal data. In most instances, target detection 
is mainly inhibited by clutter. Consequently, the problem of adaptive target 
detection in clutter has received considerable attention [1,2]. In these reports 
the clutter statistics have been assumed to be Gaussian. A comprehensive treat- 
ment of STAP algorithms in Gaussian clutter for airborne radars is available 
in [1,2]. 

In many instances, clutter statistics deviate from the Gaussian assumption. 
For example, radar clutter observed from a high resolution radar looking down 
on the ground at low grazing angles is found to exhibit a probability density 
function with an extended tail [3]. The large-tailed PDF gives rise to high prob- 
ability of false alarm. The Gaussian model for the clutter fails to predict the 
extended tail behavior. Consequently, non-Gaussian models have been proposed 
for the first order PDF of the clutter. Three commonly reported non-Gaussian 
PDF models are the Log-normal distribution, the Weibull distribution and the 
K-distribution. Furthermore the K-distribution has been found to satisfactorily 
account for the first order PDF of data from terrain and ocean scatter exper- 
iments [3,4]. The first two PDFs are based on empirical studies, whereas the 
K-distribution has physical significance in that the observed statistics can be 
related to the electromagnetic and geometric factors pertaining to the scattering 
surface [5]. 

More precisely, the probability density function (PDF) of ground clutter ob- 
served from airborne radars at low grazing angles exhibits a large tail [3]. The 
large tail gives rise to excessive false alarm probabilities. The Gaussian model 
for clutter fails to predict the large-tail behavior. Consequently non-Gaussian 
models are needed to describe the first order PDF of the clutter. Furthermore, in 
many instances radars employ a high pulse repetition frequency. Consequently, 



successive clutter returns are highly correlated. Hence, in addition to the first 
order PDF, the pulse-to-pulse correlation of the clutter needs to be accounted 
for. When dealing with correlated non-Gaussian random variables, there is no 
unique model for their joint PDF. This is due to the arbitrarily large number of 
ubiquitous higher order dependencies. However, it becomes extremely difficult 
to measure the higher order dependencies in practice. On the other hand, it is 
possible to obtain information pertaining to the first order PDF and correla- 
tion function by using histogram fits to experimental data and power spectral 
density estimation or autocorrelation methods, respectively. Hence, a method 
for specifying the joint PDF of correlated non-Gaussian radar clutter based on 
the first order PDF and correlation function has considerable practical merit. 
Spherically invariant random processes (SIRP) provide a powerful mechanism 
for specifying the joint PDF of N correlated non-Gaussian random variables 
based on the first order PDF and correlation function [6,7]. Therefore, the 
SIRP model for non-Gaussian clutter is used in all the studies undertaken in 
this work. 

This work discusses methods for adaptive target detection in additive non- 
Gaussian interference which can be modeled by SIRPs. As a prelude to the 
target detection problem it is useful to discuss the target model in some detail. 
Typically, radar returns from a desired target undergo an attenuation and delay 
on account of the dispersive effects of the propagating medium. These effects 
are accounted via a complex amplitude. Additionally, the complex amplitude 
embeds information about the radar target cross-section. Therefore, the target 
is assumed to be known within a multiplicative complex amplitude of a known 
steering vector. The unknown complex amplitude can be modeled either as a 
deterministic parameter or as a random variable with each choice leading to 
a particular form for the adaptive detector. In this work, it is assumed the 
complex target amplitude is an unknown deterministic parameter. 

The problem of adaptive target detection in non-Gaussian interference is 
then addressed. Important requirements in this problem include the reduction 
of training data support used for covariance estimation and the reduction of 
computational complexity of the algorithm. Classical methods for space-time 
adaptive processing (STAP) deal with target detection in Gaussian interference. 
These methods use the sample covariance matrix, which is the maximum like- 
lihood estimate of the covariance matrix. However, the training data support 
requirement using the sample matrix approach is large. When a sample matrix 
based method is used for non-Gaussian interference cancellation, the training 
data requirements increase tremendously. Consequently, techniques for improv- 
ing performance in non-Gaussian scenarios call for additional information about 
the interference. Accordingly, this report presents techniques which make use of 
additional information to reduce the training data and computational require- 
ments. 



1.3 Report Organization and Overview of Re- 
sults 

This report is organized as follows. Chapter 2 discusses the problem of adap- 
tive target detection in non-Gaussian SIRPs using a multichannel model-based 
method. In this approach, the interference is approximated by a multichan- 
nel autoregressive (AR) process. More precisely, the interference is assumed to 
arise as the output of a multichannel system, whose transfer function is selected 
to give rise to the desired interference spectrum. The problem is then one of 
estimating the model coefficients (multichannel system transfer function) using 
training data. Significant savings in training data can be realized when the 
number of coefficients in the model (model order) is small. Low model order 
approximation has been found to satisfactorily account for the spectra of sev- 
eral simulated and real data scenarios. The resulting adaptive receiver is shown 
to be equivalent to a parametric adaptive matched filter compared to a data 
dependent threshold. Chapter 3 discusses the role of canonical correlations in 
unifying several recently proposed STAP algorithms. Chapter 4 addresses the 
problem of adaptive target detection in SIRPs using a covariance matrix based 
method. The resultant receiver structure is shown to be a generalized estimator- 
correlator. This provides several insights on the adaptive detection problem. In 
chapter 5, we discuss the principal component inverse (PCI) method and its 
application to SIRPs. Conclusions are presented in chapter 6. 

1.4 Notation 

1. Lowercase boldface symbols denote vectors. 

2. Uppercase boldface symbols denote matrices. 

3. Scalars are denoted by both upper-case and lower-case symbols. 

4. |.| denotes the determinant of a matrix as well as the absolute value of a 
complex number. The argument of |.| specifies its usage. 

5. The superscript "denotes estimated quantities. 

1.5 Publications 

The following journal and conference publications resulted from this effort. 

1. "A Parametric Detection Algorithm for Space-Time Adaptive Process- 
ing in Correlated Non-Gaussian Radar Clutter," M. Rangaswamy, J.H. 
Michels, to appear in the EURASIP Signal Processing journal. 

2. "A parametric multichannel detection algorithm for correlated non- Gaussian 
random processes," M. Rangaswamy and J. H. Michels, IEEE national 
radar conference, Syracuse, NY, May 1997. 



3. "Space-Time Adaptive Processing (STAP) in Airborne Radar Applica- 
tions," J. H. Michels, T. Tsao, B. Himed and M. Rangaswamy, IASTED 
international conference on signal processing and communications, Canary 
Islands, Spain, February 1998. 

4. "Performance of Principal Components Inverse (PCI) for Strong Low 
Rank Non-Gaussian Interference," B.E. Freburger, D.W. Tufts and M. 
Rangaswamy, invited paper at the conference on information sciences and 
systems, Princeton, NJ, March 1998. 

5. "Adaptive Signal Processing in Non-Gaussian Noise Backgrounds," M. 
Rangaswamy and J.H. Michels, proceedings of the ninth IEEE-SSAP Work- 
shop, Portland, OR, September 1998. 

6. "A Unified Framework for Space-Time Adaptive Processing ," M. Ran- 
gaswamy, proceedings of the ninth IEEE-SSAP Workshop, Portland, OR, 
September 1998. 



Chapter 2 

Parametric Adaptive 
Matched Filter 

2.1 Overview 

This chapter discusses the problem of space-time adaptive processing for radar 
signal detection in additive correlated non-Gaussian clutter using a paramet- 
ric model-based approach. The adaptive signal detection problem has been 
addressed extensively for the case of additive Gaussian clutter. However, the 
corresponding problem for the non-Gaussian case has received limited attention. 
The additive non-Gaussian clutter is assumed to be modeled by a spherically in- 
variant random process (SIRP). The innovations based detection algorithm for 
the case of constant signal with unknown complex amplitude is derived. The 
resulting receiver structure is shown to be equivalent to a parametric adaptive 
matched filter compared to a data dependent threshold. Performance analysis 
of the derived receiver for the case of a K-distributed SIRV is presented. 

2.2 Introduction 

This investigation is motivated by a desire to detect signals in additive correlated 
non-Gaussian clutter using multichannel data. The problem of adaptive signal 
detection in additive noise background is of interest in several areas such as 
radar, sonar, and digital communications. This problem has been addressed 
in great detail when the background noise is Gaussian [8-13]. However, the 
corresponding problem for the case of additive, correlated non-Gaussian noise 
has received limited attention [14]. This is due to the lack of suitable models for 
describing the multivariate PDF of correlated non-Gaussian random variables. 
Spherically invariant random processes have been shown to provide an attractive 
mechanism for specifying the joint PDF of correlated non-Gaussian random 
variables [6,7]. Sangston and Gerlach in [15] derived the SIRP model for non- 



Gaussian radar clutter on the basis of a limit theorem arising from the physics 
of the scattering mechanism. 

We concern ourselves with the adaptive detection problem in additive SIRP 
for a linear phased array radar, in which the received data can consist of re- 
turns from a target, clutter, jammers and white noise where the complex target 
amplitude and interference covariance matrix are unknown. In this chapter, in- 
terference consisting of clutter, jammer and white noise are denoted by "noise". 
The type of SIRP noise and the associated shape parameter values are assumed 
to be known a priori. This investigation generalizes the work of [14] in that the 
dispersive effects of the propagating medium are accounted for through an un- 
known complex amplitude. The adaptive processor is shown to be equivalent to 
a parametric adaptive matched filter compared to a data dependent threshold. 
Properties of the test and its performance analysis are presented. 

This chapter is organized as follows. In section 2 we present the problem 
statement. Section 3 discusses the derivation of the innovations based receiver. 
Performance analysis of the derived method is discussed in section 4. Conclu- 
sions and directions of future research are presented in section 5. 

2.3    Problem Statement 

We outline the problem of interest in this section. N snapshots are observed us- 
ing a J element narrowband uniform linear array with equally spaced elements. 
Using this data, we need to adaptively detect the presence of a desired signal. 
This is equivalent to the following statistical hypothesis testing problem in the 
presence of nuisance parameters. 

H0:   x = y (21) 

Hi :   x = as + y v     ' 

where 
a = Unknown complex signal amplitude. 
x = Received complex data vector under the two hypotheses. 
s = Desired JN x 1 complex signal vector. 
y = JN x 1 complex SIRV with known characteristic PDF. 
H0,Hi = The null and alternate hypothesis, respectively. 
It is assumed that the JN x JN Hermitian covariance matrix of y, denoted by 
X, is unknown. 

We briefly state the following important properties of SIRVs and refer the 
interested reader to [6,7,14] and the references contained therein for further 
detail. 

1. Every SIRV y is equivalent to the product of a Gaussian random vector 
z and an independent non-negative random variable V, with PDF fv{v), 
defined to be the characteristic PDF of the SIRV. Consequently, y = zv. 
The PDF of y is given by 

fY(y)=n-JN\V\-1h2jN(q) (2.2) 



where q = yE 1y and 

f°° a 
h2jN(q)= I    v-2JNexp(-±)fv(v)dv (2.3) 

2. SIRVs are closed with respect to linear transformations. In other words 
every linear transformation on a SIRV results in another SIRV with the 
same characteristic PDF. 

3. Minimum mean square error estimation (MMSE) problems involving SIRVs 
result in linear estimators. 

An important issue in the hypothesis testing problem of eq (2.1) is the choice 
of the model for the complex signal amplitude. The complex signal amplitude, a, 
can be modeled either as a deterministic but unknown parameter or as a random 
variable. The latter choice does not permit the development of a uniformly most 
powerful (UMP) test even in the case of Gaussian noise and perforce precludes 
the development of a UMP test in the non-Gaussian case. Therefore, a is treated 
as a deterministic but unknown complex signal amplitude in this work. 

2.4    The Parametric Detection Method 

The hypothesis testing problem of eq (2.1) is now considered. No optimality 
property of the derived test is claimed. We consider the likelihood ratio, given 
o and E, shown by 

A(x|a,E)=£^M (2.4) 
n2jN(qo) 

where 
go = x^E^x 

ft = (x - as)1*?;-1 (x - as) 
h2JN{w) = f™v-*Jflexp{-%)fv(v)dv [2-5} 

H = Hermitian Transpose 

The maximization of eq (2.4) over the nuisance parameters, a and E, is a difficult 
problem in general. No UMP test is available for this problem even in the 
Gaussian case (/i2jjv(g) = exp(-q)). Therefore, the approach used in this work 
consists of replacing the unknown parameters in eq (2.4) by their estimates. 
More precisely, we use a maximum likelihood estimate of o while employing 
a parametric estimate for E. The parametric estimate of E is optimal in a 
minimum mean square error sense. It has been shown in [16] that the parametric 
estimate for E is an approximate maximum likelihood solution in the Gaussian 
case. Specifically, we assume the SIRP is approximated by an autoregressive 
(AR) model. It is assumed that the order of the AR model is known a priori. In 
practice, the model order is unknown and must be determined for each scenario. 
This is a subject for future investigation. 



2.4.1 Maximum Likelihood Estimate of Signal Amplitude 

Let S denote the parametric estimate of E. The parametric estimate of I! is 
discussed in some detail in [14]. We consider the maximization of eq (2.4) over 
a. Since a appears only in the numerator of eq (2.4), the maximum likelihood 
estimate of a is obtained from 

aA(x|o,S) = dh2jN(qi) _ Q ,2^ 
da da 

Note that dh"^) = dh"^M M. However, from eq (2.5), it follows that 
tajJvO is a monotonically decreasing function. Consequently, 

dh2iNiqi) = - r v->™-*exp{-%)fv{v)dv < 0. (2.7) 
dqi Jo v2 

Hence, the desired solution is obtained by minimizing q\ over a. We have 

ft = (x - os)//S-1(x - os) = ||XT*(x - as) 112 > 0 (2.8) 

where ||.||2 denotes the squared norm. From eq (2.8), q\ is minimized when the 
squared norm is zero. This results when a = a, where 

a=L_5_JE. (2.9) 
s"£-is 

Finally, we may rewrite q\ as 

ft = x^S^x - '       .      '   = gb" '   „+     '  ■ (2-10) 

where qo = xffS_1x. 

2.4.2 Parametric Model Based Likelihood Ratio Test 

We derive the parametric model based likelihood ratio test by two different 
methods, called the block form and sequential form, respectively. The latter 
form is implemented in this work, while the former is helpful in discussing the 
properties of the test. Significantly, the test does not involve the explicit for- 
mation or inversion of a sample cövariance matrix. Consequently, the algorithm 
is not restricted by the training data support of K > JN. In this method, the 
observed data processes are assumed to arise at the output of a multichannel 
linear system driven by white noise. Specifically, the observed data process is 
assumed to follow a multichannel autoregressive (AR) model. Given the transfer 
function of the multichannel linear system, the transfer function of the inverse 
filter which whitens the observed data is readily specified. The whitened data 
is termed as an innovations process. The innovations process is statistically 
equivalent to the observed data process. An excellent discussion of this issue 
can be found in [14] and the references therein.  The transfer function of the 



multichannel linear system and also that of the inverse filter are uniquely de- 
termined by specifying the multichannel AR model parameters. In the block 
form, these parameters are specified via the matrix coefficients of linear predic- 
tion and the diagonal error residual covariance matrix whereas in the sequential 
method these are denoted by the pth order coefficients of linear prediction and 
the driving white noise covariance matrix respectively. 

Block Form 

We derive the parametric detection algorithm and show that the resulting 
test is equivalent to a parametric adaptive matched filter compared to a data- 
dependent threshold. The likelihood ratio of eq (2.4) is expressed as 

We consider an LT)LH decomposition of £ with the L and the D matrices as 
defined in [14]. Following the method and notation of [14] we have 

t = LDL" 
XJ-i = L-^D^L-1 

q0 = x^L-^D^L^x = V^D-^ 
■ffr»-i. ft = 7"D-17 - 

7 = L-1x 
s0 = L_1s 

(2.12) 
s„"D-i s0 

where 7 is the innovations process defined in [14]. The innovations based likeli- 
hood ratio test is then expressed as 

A{7} = ^|)?T 
h2JN{qo)   «o 

where T is a suitably chosen threshold depending on the desired false alarm 
probability. Eq (2.13) can be rewritten as 

h2JN(qi) <Th2jN(qo)- (2.14) 

Taking h^^Q of both sides of eq (2.14) gives 

"1 

?i   < ~ K}NlTh2JN(qo)]. (2.15) 

The negative sign on the right hand side of eq (2.15) is due to the monotoni- 
cally decreasing property of h2JN(-). Using ft from eq (2.12) in eq (2.15) and 
rearranging terms, the innovations based detection test takes the form 

'VJ <TA <2-16) s0 U     So    H0 

10 



where TA = qo + KJN[Th2jN(Qo)]- For the specific case of Gaussian noise, 
where h2jN{w) = exp{-w), the test statistic of eq (2.13) is expressed as A{j} = 

*ajlffi\ = go - & = |sC^"iT|2 and the resulting test reduces to '"Cg^f  >T 

which is simply the parametric adaptive matched filter. 
Recent work [12,13,17] examines the problem of adaptive signal detection in 

the framework of invariance with respect to rotation and gain transformations. 
The adaptive coherence estimator (ACE) test proposed therein takes the form 

[S   *    XJ  >v (2-17) 
s^E-isx^S-ix «o 

where £ = £ YH=I 
x«xf and Xj, i = 1,2,... ÜC denote the independent iden- 

tically distributed training data. The ACE test of eq (2.17) has a pleasing 
geometry. It is also maximally invariant to rotation and gain transformations. 
More precisely, the same threshold setting is maintained when the test data x 
is scaled by a gain factor G and the training data is scaled by a gain factor 
g. The CFAR feature of the test applies for the case of Gaussian interference. 
However, when the interference is a SIRV, each training data can be represented 
as Xi = ZiVi, i = 1,2,.. .K. If S is formed from this training data and used in 
the ACE test of eq (2.17), it is easy to show that the test statistic is no longer 
maximally invariant. This is due to the fact that different training data realiza- 
tions are subject to different gain transfromations. Consequently, the threshold 
is no longer invariant to the distribution of the scale factor. Hence, the CFAR 
feature is lost. Performance of this test in SIRVs is comparable to that of the 
AMF [10] operating in SIRVs and hence will not be considered further. 

Sequential Form 

Let x(m) denote one snapshot of the received data. The concatenated vector of 
snapshots is denoted by x = [x(l)Tx(2)T... x(JV)r]T. Each snapshot is a J x 1 
vector. Let u(n) denote the J x 1 steering vector written in time series form. A 
multichannel one-step linear prediction error filter of order p with J x J matrix 
coefficients processes the data under the alternate hypotheses. Hence, qo and 
qi from eq (2.12) become 

«o = £^7o"MiV>M 
?i = E„=i7off(«)D0 7oW -   ^\<{n)Ii-^o{n) (2-18) 

= ELiT^WDQ-^OW - |o|2 Ei"i<(")D0-1«o(n) 

where 70 (n) is the whitened J x 1 vector of samples for a given snapshot, D0 

is the J x J diagonal covariance matrix of 70 (n) and u0(n) is the transformed 
steering vector obtained by passing u(n) through the prediction error filter. 
Using q0 and qi from eq (2.18) and following the algebra from eqs (2.13)-(2.16), 
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it follows that the test of eq (2.16) reduces to 

IS^iffftODöSfrOl' »y 
En=l< (n)Do   uo(n)    "° 

where T^ = q0 + /i^jjv[T/l2jJv(go)], with g0 being given by eq (2.18) and a = 
V "^JV tit    \T-* —1        /    \ 

—R=*  °„, ,_°!——• The important difference between this derivation and the 
n=iuo(n)Do  u°(") 

previous derivation is that only the pth row of the L matrix (in the previous 
derivation) is used here because we restrict ourselves to an AR filter of order 
p.  Thus, we use the pth order coefficients of linear prediction.   The previous 
derivation makes use of the entire L matrix which contains the coefficients of 
linear prediction of orders 1 to p [18]. However, as with the test of eq (2.16), 
the test of eq (2.19) also involves a data dependent threshold, which cannot be 
determined without a priori knowledge of fv(v).  Consequently, the detection 
test implemented here is given by 

"i 

Zn[A{7}] = Jn[/i2jN(gi)] - ln[h2JN(q0)} > ln(T) (2.20) 
"o 

where T is a suitably chosen threshold depending on the desired false alarm 
probability and q0, qx are specified in eq (2.18). A block diagram of the test 
implementation is shown in Figures 2.1(a) and 2.1(b). The two figures are 
equivalent except that Figure 2.1(b) explicitly denotes the estimation of a. 

Properties Of The Parametric Model Based Test 

From eq (2.16) it is clear that the innovations based detection test of eq (2.13) is 
equivalent to a paramteric adaptive matched filter compared to a data dependent 
threshold. The test of eq (2.16) has several interesting properties. 

1. The test statistic of eq (2.16) is simply the squared magnitude of the 
inner product of a transformed signal vector and the innovations vector, 
introduced by the matrix D_1 normalized by the norm of the transformed 
signal vector. Thus, the innovations based detection method can be cast 

«i _, 

in the framework of \wHx\2 > TA where w =     °   s»     is the normalized 
«o vsoD   s° 

projection of the transformed desired signal vector onto the null space of 
the noise covariance matrix. 

2. We consider the case when h2jN(w) = exp(-w) (Gaussian noise). Then, 
the test of eq (2.16) reduces to 

' gD-J     <T (2-21) s0 U     S0    H0 

where T   = ln{T).   In this case, note that the data dependence of the 
threshold vanishes and the test becomes the parametric version of the 
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classical adaptive matched filter (AMF) test of [10]. Thus, we conclude 
that the innovations based detection algorithm (IBDA) for SIRPs is a 
generalization of the AMF derived in [10]. 

The test of the form of eq (2.16) provides further insight into the detection 
results of [14]. Comparison of curves 1 and 2 of Fig 2 in [14] reveals that the 
IBDA for non-Gaussian noise backgrounds has the potential for significant 
performance improvement at low signal-to-noise-ratio (SNR). Also Fig 2 
of [14] revealed that at large SNR (> 5 dB), the receiver for the case 
of Gaussian noise outperforms the IBDA for non-Gaussian backgrounds. 
This performance inversion can be explained by casting the IBDA of [14] 
in the form of eq (2.16). Following the method presented in the derivation 
of eq (2.16), the IBDA of [14] can be expressed as 

Tle[s"j:-^} |Is^E-is + \q0 + \K}N[Th2JN{qQ)] 

q0 = xffS_1x. 

For the special case of Gaussian noise eq (2.22) reduces to 

^{s^S-ix} > Vs-^s + J (2.23) 
H0 ■ 

We first recognize that eqs (2.22) and (2.23) correspond to a matched 
filter statistic. In Fig 2 of [14], the noise was assumed to be white. Hence, 
£ = cr2I. Furthermore, since sKs = E (constant energy), the SNR is 
controlled by a2. Specifically, low SNR corresponds to large values of 
a2 and vice versa. Large values of a2 (low SNR) result in a reduction 
in the contributions of the first two terms of the threshold in eq (2.22). 
We then examine the contribution of the third term in the threshold of 
eq (2.22). Since /i2jjv(-) is a monotonically decreasing function, large 
values of a2 result in small values of q0 and hence large values of h2jN(-)- 
This results in a large value for the argument of h^jN(.). Again due to 
the monotonicity of /i2.w(-), it follows that /iJjjvC) Sives rise to a large 
negative contribution, thereby resulting in a reduction of the threshold. 
This additional reduction in the threshold arising from the third term of 
eq (2.22) is responsible for improved detection performance at low SNR. 
The Gaussian case results in a constant threshold which is greater than 
that of the non-Gaussian IBDA. Therefore, its performance at low SNRs 
suffers. 

However, at high SNRs (small values of a2), the first two terms of eq (2.22) 
give rise to large contributions while the third term yields a very small 
negative contribution. Hence, the threshold is larger than that for the 
Gaussian case. Therefore, the Gaussian receiver outperforms the non- 
Gaussian IBDA. 
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4. A possible criticism against the test of eq (2.16) and eq (2.19) is that 
the threshold is data dependent. Thus, determination of the data depen- 
dent threshold requires a priori knowledge of the specific type of SIRP 
noise background, which is generally unknown. Furthermore, threshold 
specification involves calculation of h^jffi-)- In many instances, the func- 
tional form of /i2j7v(0 is extremely complicated. Therefore, it may not 
be possible to calculate Ti^jjvO) analytically. In such instances, numerical 
techniques must be used. These issues are currently under investigation. 
Therefore, in this work, we use the test of eq (2.20). It is extremely dif- 
ficult to determine the PDF of the test statistic of eq (2.13) in closed 
form. Consequently, it is not possible to obtain closed form or near closed 
form results for the detection and false alarm probabilities. Hence, perfor- 
mance analysis must be carried out by Monte-Carlo simulations following 
the method of [14]. 

5. In general, T > 1. Consequently, TA > 0. Also, since h2jN(-) is a mono- 
tonically decreasing function, it follows that TA < qo- Hence, 0 < XU < qo- 
The data dependence of the threshold vanishes for the case of Gaussian 
noise (/i2jjv(w) = exp(-w)). Another case where the data dependence 
vanishes is when T = 1. This case arises frequently in digital commu- 
nication problems where a Bayesian hypothesis testing method involving 
cost functions is used. Then, although h2jN{w) ^ exp(-w), the test of 
eq (2.16) reduces to that for the case of Gaussian noise. 

2.5    Performance Analysis 

Performance analysis of the detection architecture of Fig 2.1 is discussed for 
the case of a K-distributed SIRV. The K-distribution has been proposed as a 
model for the amplitude statistics of ground and sea clutter observed from high 
resolution airborne radars operating at low grazing angles. The K-distributed 
envelope PDF is useful for modeling non-Gaussian radar clutter [14] and is given 
by 

/fl(r) = f^)(T)a^-l(6r)      0^r^°° (2'24) 

where a is the shape parameter of the distribution, 6 denotes the scale parameter 
of the distribution, and KN(.) is the Nth order modified Bessel function of 
the second kind. The characteristic PDF for the K-distributed SIRV and the 
corresponding /i2JN (Q) are 

fv(v) = jK(bvf°<-lexp(-bW)      0 < v < oo. . 

r(a) h2JN(q) = %j-(bJq)a-JNKa-.Nj(2bJq). 

Performance evaluation is carried out using Monte-Carlo simulation. For a 
false alarm probability, P/tt, of 0.01, the Monte-Carlo method uses NR = 10,000 
independent realizations of observation data for each detection run. Each detec- 
tion run used one estimate of the sample covariance matrix (or AR parameters 
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Figure 2.2: Probability of Detection versus SINR: l=Matched Filter in Gaussian 
Interference+White Gaussian Noise, 2=AMF in Gaussian Interference+White 
Gaussian Noise, 3,4=AMF in K-distributed Interference+ White Gaussian Noise 

for the parametric algorithm) based on a sample size of K realizations.  The 
procedure is repeated for a total of Nd — 1000 detection runs. 

The resulting detection probability, Pd, is compared to that of the classical 
adaptive matched filter of [10]. Figures 2.2-2.5 show the plot of Pd versus 
signal-to-interference plus noise ratio (SINR) for the case of a constant signal 
with unknown amplitude in partially correlated clutter [AR(2) model] plus white 
Gaussian noise. Detection results are based on two channels (J=2), eight pulses 
(N=8), and P/tt = 0.01 with sample support size {K) as a parameter. In 
Figure 2.2 curve 1 shows the performance of the matched filter (MF) receiver 
in Gaussian clutter plus white noise. Curve 2 depicts the performance of the 
adaptive matched filter (AMF) receiver in Gaussian clutter plus white noise 
with K=32. Curve 4 shows the degradation in performance of the AMF when 
the clutter is K-distributed with shape parameter a = 0.5. The performance 
reduction is due to poor covariance estimator performance and the increased 
threshold setting due to the heavy tails of the K-distributed clutter process. 
In [19], analytical expressions are derived for the increase in sample support 
size needed to reduce the estimator error variance of the sample covariance 
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estimator for SIRP clutter compared to that for the Gaussian case. For K- 
distributed processes, the increase is given by the factor 1 + ^. Thus, for 
a = 0.5, the sample support size needed for the sample covariance estimator 
for K-distributed SIRPs is five times greater than that for the Gaussian case to 
produce the same estimator error variance. In a recent effort [20], we present 
the performance improvement that can be obtained by using the maximum 
likelihood estimate of the covariance matrix for SIRPs. Use of this estimator 
will restore the maximal invariance and CEAR properties of the test of [12,13] 
for SIRVs. Curve 3 shows the resulting performance improvement of the AMF 
in K-distributed clutter plus white Gaussian noise when the sample support size 
increased by a factor of five. 

Figure 2.3 again shows Pd versus SINR for the MF and the AMF for Gaussian 
clutter plus white noise in curves 1 and 3, respectively. Monte-Carlo Pd results 
for the AMF are shown by the points designated 'o' for validation purposes. 
Curve 2 shows the Monte-Carlo Pd results (+) for the parametric adaptive 
matched filter (PAMF) designed for Gaussian clutter plus white noise. A matrix 
prediction error filter of order 4 was used. The Strand-Nuttall algorithm [21,22] 
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Figure 2.4: Probability of Detection versus SINR:1=PAMF in K-distributed 
clutter(a = 0.1)+WGN, 2=PAMF in K-distributed clutter(a = 0.5)+WGN, 
3=AMF in Gaussian clutter+WGN, 4=AMF in K-distributed clutter (a = 
0.5)+WGN, 5=AMF in K-distributed clutter(a = 0.1)+WGN 

was used to estimate the filter coefficients. Note the improved performance of 
the PAMF over the AMF. 

In Figure 2.4, we first consider curves 3, 4, and 5, corresponding to the per- 
formance of the AMF in K-distributed clutter plus white Gaussian noise(WGN) 
with shape parameters a = oo (Gaussian), a = 0.5, and a = 0.1, respectively. 
We observe a degradation in performance as the statistics of the clutter process 
deviate from Gaussianity. Curves 1 and 2 show the performance of the PAMF 
designed for K-distributed clutter process with shape parameters a = 0.5 and 
a — 0.1, operating in K-distributed clutter plus white noise for a = 0.5 and 
a = 0.1, respectively. These curves reveal several interesting features. First, we 
note that operation in non-Gaussian clutter offers the potential for significant 
performance improvement over the Gaussian case for a considerable range of 
SINR when the receiver is properly designed. Next, the convergence of curves 
4 and 5 to curves 2 and 1, respectively reveals that as the SINR increases, the 
best achievable performance corresponds to the Gaussian receiver. 
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Finally, in Figure 2.5 we show the degradation in performance at low SINR 
values when the non-Gaussian PAMF is mismatched to the clutter PDF. Curve 
1 shows the performance of the PAMF designed for a = 0.1 operating in Re- 
distributed clutter plus white Gaussian noise with a = 0.1 while curve 2 shows 
the performance of the same receiver operating in K-distributed clutter plus 
white Gaussian noise with a = 0.5. The resulting performance degradation is 
higher than that reported in [14] for the case of a known signal amplitude. 

2.6    Conclusions 

This chapter addressed the problem of adaptive signal detection in the presence 
of additive SIRP noise using a parametric model-based approach. The derived 
receiver was shown to be equivalent to a parametric adaptive matched filter com- 
pared to a data dependent threshold. For the particular case of Gaussian noise, 
the receiver reduced to the parametric adaptive matched filter. Performance 
analysis of the PAMF for the case of K-distributed SIRP was presented. The 
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PAMF reveals the potential for significant performance improvement over the 
classical AMF when operating in non-Gaussian clutter backgrounds, especially 
at low SINR. It was also seen that the performance of the classical AMF de- 
grades severely in non-Gaussian clutter backgrounds. Also the sample support 
size needed to improve the performance of the AMF in non-Gaussian clutter 
backgrounds becomes excessively large as the statistics of the clutter process 
deviate from Gaussianity. 

Future work in this area must include an investigation of the properties of 
the data dependent threshold, CFAR features of the PAMF, robustness of the 
PAMF receiver as well as a procedure to determine the model order used for 
approximating the clutter spectral characteristics. 
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Chapter 3 

A Unified Framework for 
STAP 

3.1 Overview 

This work provides a common framework for three recently proposed space- 
time adaptive processing (STAP) methods. A common goal of these methods 
is to reduce computational complexity and sample support requirements. It is 
shown that the canonical correlations model provides a mechanism for treating 
the STAP methods in a unified framework. 

3.2 Motivation 

This work is motivated by the adaptive signal processing problem in additive 
interference with unknown spectral characteristics. Applebaum [23] first studied 
this problem for adaptive antenna arrays using a feedback loop implementation 
of the adaptive processor. However, the technique was slow to converge to the 
steady-state solution. Space-time adaptive processing (STAP) for radar was 
first proposed by Brennan and Reed in [8,24]. The sample matrix inversion 
method of [8] exhibited significantly improved convergence over the method 
of [23]. However, the work of [8] lacked the constant false alarm rate (CFAR) 
feature. The CFAR adaptive matched filter (AMF), a variant of the beamformer 
of [8] was independently derived by Chen [9] and Robey [10], respectively. 

This work considers reduction of the computational complexity of STAP al- 
gorithms in interference scenarios with unknown covariance matrices. The anal- 
ysis herein provides a unified framework for treating several candidate STAP 
algorithms for Gaussian and non-Gaussian interference statistics. Important 
considerations in this context are the sample support requirements for inferring 
the spectral characteristics of the interference and the computational complex- 
ity in forming the weight vector. The latter issue has been the focus of recent 
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studies. Goldstein [25] proposed the cross-spectral metric (CSM) for reducing 
the interference space dimension and for faster adaptive algorithm convergence. 
Tufts in [26,27] developed the principal components inverse (PCI) method for 
the same problem. In [28], Rangaswamy and Michels derived the parametric 
adaptive matched filter (PAMF). While the analysis of [25]- [27] treats compu- 
tational complexity for Gaussian interference, the analysis of [28] addresses both 
computational complexity as well as sample support requirements for Gaussian 
and non-Gaussian interference scenarios. Model-order determination, an impor- 
tant aspect of the PAMF, is a subject of ongoing investigation. Pados in [29] 
proposed the auxiliary vector STAP algorithm for reducing computational com- 
plexity and sample support. In a related effort, Roman [30] developed the 
adaptive sidelobe canceller using the canonical correlations model (CCM). 

A unified framework for treating the PAMF, PCI, CSM, and auxiliary vector 
algorithms results from using the canonical correlations model (CCM). The 
analysis is carried out for known covariance matrix. Necessary modifications 
for adaptive estimation of the covariance matrix are then pointed out. Since 
this work relies on the methods of [25]- [27], we restrict ourselves to the case of 
Gaussian interference. However, in many instances non-Gaussian statistics have 
been reported for radar clutter returns from terrain and ocean [3,4]. Spherically 
invariant random processes (SIRP) have been used extensively as models for 
correlated non-Gaussian clutter [6,7]. Therefore, our future work will extend 
the analysis of this work to the case of SIRPs. 

3.3    Problem Statement 

The problem considered in [25]- [29] is one of target detection in the presence 
of nuisance parameters which is posed as the following statistical hypothesis 
testing problem: 

fii :   x = as + y W 

where x = received JN x 1 complex observation vector, s = known steering 
vector, a = unknown complex signal amplitude, and y = complex Gaussian 
random vector with known Hermitian positive definite covariance matrix, R. 
This is a classical signal detection problem in which the signal can be expressed 
as a linear combination of modes or basis vectors [31]. However, the modal co- 
efficients are unknown. More precisely, the steering vector is the modal vector 
and the unknown complex signal amplitude is the modal coefficient. This asso- 
ciation leads to the matched subspace filter interpretation of the matched filter 
discussed in [25]. It also provides the motivation for reducing the dimensionality 
and thus reduce the computational complexity of the algorithm. 

The maximum likelihood (ML) estimate of a is given by 

s^R-^x 
a = ^BF^ W 
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This estimate is the output of a minimum variance distortionless response 
(MVDR) beamformer given by y = wHx where w = J^R-*,. The beamformer 
output noise variance is given by P = E[\wHx\2] = SHR-I8- 

The ML estimate is then used in a likelihood ratio test, which takes on the 
form 

«i 

Is^R^xl2 > 

SaR   2S   Ho 

The test statistic of eq (3.3), which has several interesting interpretations, is 

called the direct form [25]. The first interpretation is that A(x) = ^- where 
y and P have been defined for the MVDR beamformer. This gives the inter- 
pretation that A(x) is simply the MVDR beamformer output signal-to-noise- 
ratio (SNR). It is also evident that the MVDR beamformer weight vector is 
a normalized projection of the steering vector onto the null space of the noise 
covariance matrix. Since the interference is Gaussian, probability of detection is 
a monotonic function of the SNR. Therefore, maximizing SNR is equivalent to 
maximizing the probability of detection. Hence, the interpretation of the weight 
vector as a projection onto the null space of the noise covariance matrix is an 
elegant statement of SNR maximization. 

A second interpretation is that of equivalence to a known level scalar CFAR 
processor. A scalar CFAR processor calculates the squared magnitude of the ob- 
served data normalized by the noise variance and compares to a pre-determined 
threshold. With reference to the test of eq (3.3), the scalar data is the output 
of the beamformer of [8] given by sHR_1x with output noise variance s^R^s. 
Since the threshold is independent of the actual noise covariance matrix, the 
test has an embedded CFAR feature which becomes clear from the analogy to 
a scalar CFAR processor. 

A third interpretation is that A(x) is a normalized squared magnitude cor- 
relator output (inner product). This may also be viewed as the result of max- 
imizing a likelihood function with respect to an unknown complex amplitude 
and known covariance matrix. This interpretation of the test statistic provides 
insights into the CFAR property and the relationship to magnitude squared co- 
herence between the vectors s and x. In an adaptive implementation, the work 
of [10] presents the maximization principle while using an estimated covariance 
matrix (sample covariance matrix). 

A fourth interpretation is in terms of a vector subspace approach. This gives 
rise to the indirect form or sidelobe canceller form discussed in [25]. Note that 
the test statistic can be interpreted as a two stage operation of matched filtering 
followed by interference removal. The matched filtering consists of projecting 
the received observation vector onto the signal subspace. In this case, the signal 
subspace dimension is unity because of the single mode (steering vector). How- 
ever, since the received data could consist of signal plus interference, the received 
data projection onto the signal subspace contains signal as well as interference 
components. Therefore, matched filtering is followed by interference removal. 
Interference removal is accomplished by estimating the interference component 
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in the signal subspace using the projection of the received data onto the orthog- 
onal complement space or the noise subspace. The methods of [25]- [27] can be 
cast in this framework. 

More precisely, these methods involve an eigen-decomposition of the inter- 
ference covariance matrix. The PCI technique of [26,27] retains the dominant 
eigenvalues (and the corresponding eigenvectors) of the interference covariance 
matrix. This leads to a reduced-dimension problem. Since the PCI method 
assumes that the interference covariance matrix is well approximated by a small 
number of strong low rank interferers plus white noise, best performance is at- 
tained when this assumption is satisfied. This is equivalent to the model order 
selection problem encountered in the PAMF of [28]. PCI performance degrades 
when a large number of dominant eigenvalues must be considered. The CSM 
however, considers a slightly different criterion for reducing dimensionality. In 
particular, the CSM calculates the squared magnitude of the steering vector 
projection along the eigenvectors of the noise covariance matrix normalized by 
the corresponding eigenvalues, and purges the sub-dominant normalized projec- 
tions. This gives rise to a maximum SNR criterion or alternatively minimization 
of mean squared error in estimating the interference component in the signal 
subspace from projections in the orthogonal complement noise subspace. The 
signal blocking matrix, B, in the sidelobe canceller form of implementation 
in [25] provides a set of orthonormal basis vectors for the orthogonal comple- 
ment noise subspace. In the next section, we present some aspects of coherence 
and canonical coordinates and show that the method of [25] is an application 
of the canonical correlations model. 

3.4    Canonical Coordinates and Applications 

In problems of statistical hypothesis testing and parameter estimation, a com- 
pact representation of the information contained in the observed data is sought. 
Such a representation greatly aids in dimensionality and storage requirement re- 
duction. In this study, we concern ourselves with the problem of minimum mean 
squared error estimation and the role of canonical correlations in this context. 
More precisely, in many problems of engineering importance, it is necessary to 
obtain information about a source vector given an observation vector. For ex- 
ample, the source vector could be a message signal generated at a transmitter 
and the observed data could represent the received signal. Signal propagation 
through a channel results in a received signal affected by noise and channel 
effects such as attenuation and group delay. In radar and sonar, the source 
vector is a steering vector. The transmitted signal is an electromagnetic (or 
acoustic wave) propagating in free space (or underwater). Due to the character- 
istics of the propagating medium, the transmitted signal undergoes attenuation 
and delay. In addition, the signal is contaminated by noise, clutter and jam- 
mer. Therefore, in these applications it becomes important to determine the 
similarity between the received signal and a replica of the transmitted signal 
(steering vector). Recently, we became aware of the related work of [32]. This 
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work contains the formulas for prediction error and entropy, which we derived 
independently. 

The coherence between two vectors provides a measure of similarity between 
them [33]. Some mathematical details pertaining to coherence are in order. Let 
z = I x 1 Source vector, p = M -1 x 1 Observed data vector, Kz = Covariance 
matrix of z, Rp = Covariance matrix of p, and RÄp = Cross Covariance matrix 
between z and p. For convenience, the vectors z and p are assumed to have 
zero mean. The coherence matrix between z and p is given by 

Czp = E\Rz
i2.(TLp~ip)H] = Rj^R^Rp * (3.4) 

The minimum mean squared error estimate of z given p is 

z = £[z|p] = R^R^p (3.5) 

The estimation error covariance matrix is given by 

£ = E[{z - z)(z - z)H] = R* - RspR^Rp* (3.6) 

Using the definition of the coherence matrix, the error covariance matrix can be 
expressed as 

£ = E[(z - z)(z - zf] = Rf (I - CzpCfp)Rj (3.7) 

The canonical coordinate representation relies on a singular value decomposition 
(SVD) of the coherence matrix. More precisely, the coherence matrix can be 
expressed as 

Czp = FKG" (3.8) 

where F and G denote the matrices whose columns are orthonormal eigenvectors 
of C^pC^, and C^,CZp, respectively. K is the diagonal matrix of singular values 
of C^p. The elements of K represent the canonical correlations. The error 
covariance matrix can be expressed as 

£ = R| (I - FK2Fff)Rl (3.9) 

Each element of K is the direction cosine between a unit variance random vari- 
able obtained from the canonical source coordinates and another unit variance 
random variable from the canonical measurement coordinates. The diagonal 
form of K ensures that the ith unit variance random variable from the canonical 
source coordinate is correlated only with the ith unit variance random variable 
from the canonical measurement coordinate. Retaining the dominant direction 
cosines enables dimensionality reduction. 

With reference to [25], and following the notation therein, d = sHx., b = Bx, 
a\ = E[\d\2] = s"Rs, R6 = BRB" and rbd = BRs and rdb = r^. The problem 
considered in [25] is one of estimating d given b. Observe that d is a scalar. 
Accordingly, the error covariance matrix of eq (3.9) reduces to a scalar error 
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variance. Making the corresponding associations with the canonical coordinates 
representation, it follows that the error variance takes the form 

£ = a2
d(l-FK2FH) = a2

d(l-K
2) (3.10) 

Clearly, reducing dimensionality increases the estimation error, i.e. K2 resulting 
from a reduced dimension is less than K2 for the full dimension problem. The 
approach of [25] seeks to minimize the increased error and reduce the dimen- 
sionality of the weight vector by rank ordering the projection of TU onto the 
eigenspace of R& normalized by the corresponding eigenvalues and retaining the 
dominant projections. 

We seek to extend the analysis for the STAP problem with unknown covari- 
ance matrix. For the STAP problem, the approach of [25] employs an estimated 
covariance matrix of the joint domain data. The analysis proceeds in an identical 
manner to that of the case of known covariance matrix with the important dif- 
ference that the known covariance matrix is replaced by its maximum likelihood 
estimate (MLE). For Gaussian interference, the MLE is the sample covariance 
matrix. The method of [29] is similar to that of [25] in that it consists of matched 
filtering followed by interference removal using an estimate of the interference 
in the signal subspace from a projection of the data onto the orthogonal com- 
plement space. However, an important difference between the two methods lies 
in the construction of basis vectors for the orthogonal complement space. The 
method of [29] uses a recursive Gram-Schmidt method for determining the basis 
vectors. Dimensionality reduction is afforded by the use of a small number of 
basis vectors for the orthogonal complement space. Adaptive implementation 
in [29] employs the sample covariance matrix. Thus, for the methods of [25] 
and [29], the sample support requirement is L > JN in general. 

3.5    Entropy and Canonical Coordinates 

We consider a partitioned Mxl vector u = [zT|pT]T. The covariance matrix 
of u is given by 

R„ = E[uuH] = ti-z      Rsp 
tx-pz     -tvp 

(3.11) 

Assuming that u follows a complex-Gaussian distribution, the PDF of u is given 
by 

/u(u) = ir-M\Ru\-1exp{-q) (3.12) 

where q = uHR~1u and |.| denotes the determinant. The entropy of u is given 
by 

IT(u) = -23[/n{/u(u)}] = Mln(n) + ln\Ku\ + E{Q) (3.13) 

where Q = II^R^U = tr[uH~R-lxi\ = tr\R~l
MM

H
]. Upper case notation is 

used to denote a random variable whereas lowercase letters denote a particular 
value of the random variable. It follows that E(Q) = E{tr\R^luuH]} = tr[I] = 
M. Thus, 

H(xi) = Mln(v) + ln[\-Ru\] + M (3.14) 
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The determinant of Ru can be expressed in terms of that of R2 and its Schur 
complement as |R„| = IR^KRp - R^,Rj1R^p)|. Using the canonical cor- 
relation representation, the determinant can be rewritten as Ru — |R2||(I — 
FK2Fi/)| = |RÄ||I — K2|. Thus, the entropy may be expressed in terms of 
canonical coordinates as 

min(l,M—I) 

H{u) = Mln(Tv)+ln[\B,2\]+      J2     ln(l - k?) + M (3.15) 
t=i 

' where ki denote the diagonal elements of K. This last equation provides an 
excellent representation of entropy in terms of the canonical coordinates. Max- 
imizing entropy is equivalent to minimizing the error covariance matrix. This 
also corresponds to maximizing the coherence between z and p. 

With reference to [28], it can be shown that maximum coherence and per- 
force maximum entropy results when the first p lags of the clutter autocorrela- 
tion function are perfectly known. The development of entropy and canonical 
coordinates is useful for analyzing the work of [25], [28] and [29] in a common 
framework. With reference to [25,29] only a single canonical coordinate arises 
since one needs to estimate the interference component in the signal subspace 
using a projection of the data onto the orthogonal complement space. It must 
be noted that the maximum value of the canonical coordinate would result when 
the covariance matrix is known and when full dimensionality of the noise sub- 
space is used. The methods of [25] and [29] provide two different approaches 
for reducing the dimensionality of the orthogonal complement space. A crite- 
rion for determining the dimensionality employed in each algorithm can be the 
canonical coordinate value, K. In particular, it is desirable to have a value of 
K as close as possible to that obtained in the full dimension case. Once this 
value of K is selected, the methods of [25] and [29] employing the appropriate 
dimension orthogonal complement space will result in equivalent performance. 

3.6    Conclusions 

This chapter provides a unifying framework for three recently proposed adaptive 
processing methods [25,28,29]. Several insights using the canonical correlations 
method can be gained. Future work must address the issue of the canonical 
correlations PDF for both known and unknown covariance matrices. This will 
enable performance evaluation of both full and reduced dimension STAP algo- 
rithms for Gaussian interference. Extension of the canonical coordinate based 
analysis to STAP in spatially non-Gaussian clutter modeled by SIRPs is an 
important future direction as well. 
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Chapter 4 

Adaptive Signal Processing 
for Non-Gaussian Clutter 
Backgrounds 

4.1 Overview 

This chapter discusses the problem of adaptive radar target detection in non- 
Gaussian noise backgrounds which can be modeled as a spherically invariant 
random process (SIRP). The estimated covariance matrix is used in an adaptive 
processing method for signal detection. It is shown that the resulting proces- 
sor is equivalent to a generalized estimator correlator. Performance analysis is 
presented in terms of probability of detection versus signal-to-noise-ratio (SNR) 
for the case of a K-distributed SIRP. Performance comparison of our technique 
with that of the adaptive matched filter (AMF) of [10] is presented. The method 
developed in this work affords considerable performance improvement in non- 
Gaussian noise backgrounds. 

4.2 Introduction 

This investigation is motivated by the problem of adaptive signal detection in 
additive correlated non-Gaussian noise backgrounds. We are interested in the 
problem of adaptive radar target detection. Typically, the front end of a radar 
receiver consists of an array of antenna elements. The received signal is an 
electromagnetic plane wave propagating in free space, which induces a voltage 
at each element of the array. Usually, the received echo at the radar receiver 
consists of returns from one or more targets, clutter, jammer and background 
noise. The returns from the clutter, jammer and background noise are denoted 
by "noise" in this work. Relevant issues which arise as a result include target 
detection, estimation of unknown target amplitude, and direction of arrival 
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estimation. We concern ourselves with the problem of adaptive target detection 
in non-Gaussian noise. 

Non-Gaussian statistics have been reported for scattered power from the 
ocean [4] and terrain [3]. This fact has been confirmed by experimental data 
recorded from a high resolution airborne radar operating at low grazing an- 
gles [3]. Typically most radars employ a high pulse repetition frequency (PRF). 
As a result, successive echoes tend to be correlated. Consequently, the joint 
probability density function (PDF) for the noise must include the pulse-to- 
pulse correlation between successive echoes. When dealing with N correlated 
non-Gaussian random variables, there is no unique specification of their joint 
PDF due to ubiquitous higher order dependencies. However, statistics which 
can be readily measured in practice include the first order PDF and correla- 
tion function. Hence, a model based on the first order PDF and correlation 
function has considerable practical merit. SIRPs are the only known class of 
processes which enable such a specification and have become a standard model 
for non-Gaussian radar clutter in recent years [6,7,15]. The SIRP model includes 
Gaussian clutter as a special case [6]. 

We address the problem of adaptive target detection in spherically invariant 
noise in this work. Important unknowns in this problem are the complex ampli- 
tude of the target and the noise covariance matrix. Various target models lead 
to different detector structures. In this work, the unknown complex amplitude 
of the target is modeled as a deterministic parameter. Joint maximization of 
the objective function (likelihood ratio) over the unknown parameters is an ex- 
tremely complicated problem. A uniformly most powerful (UMP) test for this 
problem does not exist for the case of Gaussian noise and perforce for SIRPs. 
Therefore, our approach is to maximize the likelihood ratio over the unknown 
complex target amplitude given the maximum likelihood estimate of the covari- 
ance matrix. In this work, we show that the complex target amplitude estimate 
is a normalized projection of the received data vector onto the signal subspace 
and that the adaptive processor is equivalent to a generalized estimator correla- 
tor. It is also shown that the adaptive processor is equivalent to a matched filter 
compared to a data dependent threshold. Performance analysis of the adaptive 
processor is presented. Finally, conclusions and future research directions are 
pointed out. 

4.3    Problem Statement 

The problem of adaptive target detection in additive spherically invariant noise 
is formulated in the framework of a classical statistical hypothesis test between 

#o:x = y 

where x = JN x 1 observed complex data vector, y = JN x 1 complex spherically 
invariant random vector, s = spatio-temporal steering vector, a =unknown 
complex target amplitude, and S =unknown covariance matrix of y. 
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When the covariance matrix and the target complex amplitude are known, 
the hypothesis test takes the form of a likelihood ratio test. However, in the 
presence of unknown parameters no UMP test exists. Therefore, our method 
consists of considering the likelihood ratio given an estimated covariance ma- 
trix. We then maximize the likelihood ratio over the unknown complex target 
amplitude to obtain its estimate. These estimated parameters are then used 
in a likelihood ratio test which forms the basis of our decision strategy. No 
optimality features are associated with this procedure. 

Note that every SIRV y is equivalent to the product of a Gaussian random 
vector z and an independent non-negative random variable V, with PDF fv{v), 
defined to be the characteristic PDF of the SIRV. An important issue in the 
hypothesis testing problem of eq (4.1) is the choice of the model for the complex 
signal amplitude. The complex signal amplitude, a, can be modeled either as a 
deterministic but unknown parameter or as a random variable. In this work, a 
is treated as a deterministic but unknown complex signal amplitude. 

4.4    Adaptive Processing Method 

The hypothesis testing problem of eq (4.1) with unknown S and a is now con- 
sidered. No optimality property of the derived test is claimed. We consider 
the likelihood ratio given o and £ obtained from the PDF of the received data 
vector under the alternate hypotheses [14] expressed as 

where 
go = xff £-1x 

qi = (x - os)iyS-1(x - as) 
h2jN(w)=f™v-2JNexp(-$)fv(v)dv ^3> 

H = Hermitian Transpose 

The maximization of eq (4.2) over the nuisance parameters, o and S, is a difficult 
problem in general. Again, no UMP test is available for this problem. Therefore, 
the approach used in this work consists of replacing the unknown parameters in 
eq (4.2) by their estimates. 

4.4.1    Maximum Likelihood Estimate of Covariance Ma- 
trix 

The unknown covariance matrix is estimated from target free training data 
consisting of independent identically distributed SIRVs sharing the covariance 
matrix of the noise in the test cell. Maximum likelihood estimation of the 
covariance matrix for SIRVs was first considered in [34]. The work of [34] showed 
that covariance matrix estimation for SIRVs can be treated in the framework 
of a complete-incomplete data problem and pointed out that the maximum 
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likelihood estimate of the covariance matrix is a weighted sample matrix. Since 
the problem does not permit a closed form solution, [34] uses an iterative method 
known as the expectation-maximization (EM) algorithm. More precisely, let x*, 
i = l,2,...,K denote independent identically distributed training data sharing 
the covariance matrix of the test data vector x. The work of [34] shows that 
the ML estimate of the covariance matrix is given by 

S = -if;cixixf (4.4) 

where a = -fe^fiy with ^.wfa) = ^^V1 and « = *f £-1*i- Clearly the 
transcendental nature of the estimate precludes obtaining a closed form solution. 
Consequently, [34] used the EM algorithm to obtain an iterative solution to the 
problem. We adopt the approach of [34] for obtaining the covariance matrix 
estimate in this work. 

4.4.2    Maximum Likelihood Estimate of Signal Amplitude 

We consider the maximization of eq (4.2) over a. Since a appears only in the 
numerator of eq (4.2), the maximum likelihood estimate of a is obtained from 

dA(x|a, S)      dhjjNJqi)     n (At.s 
 da =        da        = °- (45) 

Note that ^dail = 
a/t2^gl>fg-. However from eq (4.3), it follows that 

h>2jN{-) is a monotonically decreasing function. Hence, 

dh2jN(qi) 

Hence, the desired solution is obtained by minimizing q\ over a. We have 

9i = (x - as)"!)-1 (x - as) 
= ||E-?(x-as)||2>0 l     ; 

where ||.|| denotes the Euclidean norm. Equality in eq (4.7) holds when a = ä 
where a, is given by eq (4.8). The maximum likelihood estimate of a is given by 

„      s^S-ix 
a = 7. . 

s^S-is 

Finally, we may rewrite qi as 

(4.8) 

„*  ,        Is^S^xl2      A       Is^S^xl2 

ft=^-1x-1       ,      '   =go- '       -      '  ■ (4.9) 
sffS-1s sifX!-1s 

where go = xff XI 1x. 
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4.4.3    Adaptive Processor 

We derive the adaptive processor in this section and show that it is equivalent 
to a generalized estimator correlator. A second interpretation is that of an 
adaptive matched filter compared to a data dependent threshold. Using the 
estimates of a and X the likelihood ratio test takes the form 

[A{x}] = T>2JN m 
h2JN(qo) 

>(T) (4.10) 

where T is a suitably chosen threshold depending on the desired false alarm 
probability. Let A = |o|2sHS_1s. Then h2jN(qi) admits a Taylor series expan- 
sion of the form 

h2jN(qi) = J2 ^rAkhk
2JN(q0) (4.11) 

Jfe=0 

where hk
JN(q) = 8>llffW. Thus, eq (4.10) takes the form 

Also, it follows that 

fc=o    fc!        h2JN(q0) 

/x|v(x|«) = Tr-^IEI-1«-2'^-^) (4.13) 

A^M = *v(*M*$ = ,—^(-|)Ä (4,4) 
/•OO 

E(V-2k\x) = /    v-2kfvlx(v\x)dv (4.15) 
Jo 

Using fv\x(v|x) from eq (4.14) it follows that 

E(V~M\x)= [™ v-2JN-™exp(-%)-h^- dv (4.16) 
Jo v2  h2JN(q0) 

Since h2JN+2k(q) = (-^)khk
JN(q), we have 

E(V-2k\x) = (-l)k^JN(^l (4.17) 
n2jN{qo) 

This gives an interesting interpretation for eq (4.12). More precisely, the kth 

term in the summation is the normalized product of the minimum mean squared 
error estimate of V~2k given x and the kth power of A (the AMF test statistic). 
Thus, the test statistic of eq (4.12) is a generalized estimator- correlator. In the 
limit of small signal to noise ratios, powers of A go to zero much faster than A. 
Hence, retaining a first order approximation to the likelihood ratio produces the 
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adaptive locally optimum detector (ALOD) statistic as a particular case. For 
this specific case, the test statistic can be expressed as 

which leaves us with the interesting interpretation that the ALOD test statistic 
is simply the product of the Gaussian AMF test statistic and the minimum 
mean squared error estimate of V~2 given x. 

An alternate interpretation of the test statistic of eq (4.10) can be provided 
by using the monotonicity properties of h2jN(-)- More precisely, eq (4.10) can 
be rewritten as 

11 r <TA <4-i9) 

where TA = qo + ^jjvP^Jiv (&>)]• This leads to the interpretation that the 
adaptive processor is equivalent to an adaptive matched filter compared to 
a data-dependent threshold. For the specific case of Gaussian noise, where 
h,2jN{w) = exp(-w), the test statistic of eq (4.10) is expressed as Zn[A{x}] = 

Inl^"*)9.1}] =q0-q1= ^"A"1*1" and the resulting test takes the form 
....    -  «i 

> T which is simply the AMF of [10]. 
"0 

4.5    Performance Analysis 

Performance analysis of the test of eq (4.10) is discussed for the case of a un- 
distributed SIRV. The K-distribution has been proposed as a model for the 
amplitude statistics of ground and sea clutter observed from high resolution 
airborne radars operating at low grazing angles. The K-distributed envelope 
PDF is useful for modeling non-Gaussian radar clutter [14] and is given by 

lb    fbr\a 

/ß(r) = fRVv Ka-l{br)   °^r^°° (4-2°) 
where a is the shape parameter, b denotes the scale parameter, and KN(.) is 
the Nth order modified Bessel function of the second kind. The characteristic 
PDF for the K-distributed SIRV and the corresponding h2jN(q) are 

Mv) = jfaM'^expi-Pv2)      0 < v < oo. 
h2JN(Q) = ^ {b^q)"->NKa-Nj(2bJq). ^    } 

Performance evaluation is carried out using Monte-Carlo simulation. Data 
from the K-distributed SIRP is generated using the technique of [7]. Figure 
2.2 shows the performance of the adaptive matched filter (AMF) of [10] in K- 
distributed SIRV. Curve 1 corresponds to the performance of the AMF operating 
in Gaussian noise with known covariance matrix.  This is the best achievable 
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Figure 4.1: Minimum Mean Squared Error Estimate of V~2 

performance in Gaussian noise. Curve 2 corresponds to AMF performance in 
Gaussian noise using an estimated covariance matrix from training data. Rele- 
vant test parameters are reported in the figure. Curve 2 is generated using the 
procedure described in [10]. Curve 4 shows the AMF performance while oper- 
ating in K-distributed clutter with shape parameter 0.5. AMF performance is 
severely degraded. This is due to the fact that the sample covariance matrix 
is no longer the ML estimate of the covariance matrix. The non-ergodicity of 
the SIRP causes a tremendous increase in training data support (K=10JN) to 
obtain performance comparable to that shown in curve 2. This is shown in curve 
3. 

Figure 4.1 shows a plot of c, as a function of q. Observe that c,, which 
denotes the MMSE estimate of V^2 given Xj, is the ratio of two monotonically 
decreasing functions of q and hence is monotonically decreasing. This factor 
corrects for the non-ergodicity of the SIRP. Figure 4.2 shows the performance of 
the adaptive processing method of eq (4.10) for the case of a K-distributed SIRV 
using the ML estimate of the covariance matrix. Relevant test parameters are 
provided on the plot caption. Significant performance improvement results when 
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the ML estimate of the covariance matrix is used. The performance approaches 
that of the AMF operating in Gaussian noise. However, there is still some 
performance penalty (approximately 1 dB SNR for Pd = 0.5) compared to the 
AMF operating in Gaussian noise. This is due to the non-Gaussian statistics of 
the observed data. 

4.6    Conclusions 

In this work, we derived the adaptive processor for target detection in non- 
Gaussian noise backgrounds. The adaptive processor is shown to be a general- 
ized estimator-correlator. We also showed that the performance of the AMF in 
non-Gaussian noise is severely degraded. Our method demonstrates consider- 
able performance improvement in non-Gaussian noise backgrounds and shows 
that using 2JN training data vectors, performance to within 1 dB of the AMF 
for Gaussian noise can be obtained. Even the 2JN requirement can be quite 
stringent in several practical applications. This can be alleviated by using the 
model based parametric method of [28], and the PCI method of [27]. 
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Chapter 5 

Adaptive Signal Processing 
in Structured Interference 
Backgrounds 

5.1 Overview 

Important issues in space-time adaptive processing are the reduction of compu- 
tational complexity and training data support for covariance matrix estimation. 
Sample covariance matrix based methods used in [8]- [13] have a computational 
cost of 0(M3), where M=JN is the spatio-temporal product. Additionally ZdB 
SNR performance requires K = 2JN independent, identically distributed train- 
ing data vectors for covariance matrix estimation. However in many instances, 
a priori information about the structure of the interference background may be 
available. This information can be used to reduce the training data support 
and computational complexity of the adaptive processing method. A commonly 
encountered disturbance scenario in radar and sonar signal processing is strong 
low-rank interference plus white noise. For this scenario, the principal compo- 
nents inverse (PCI) developed by Tufts [26,27] provides excellent performance 
while reducing the training data support and the computational complexity. In 
this work, the PCI method of [26,27] is applied to non-Gaussian interference 
phenomena modeled by SIRPs. It is seen that the resulting algorithm perfor- 
mance degrades significantly when an estimated subspace is used. This is due 
to increased subspace perturbation caused by the non-ergodicity of the SIRP. 

5.2 Introduction 

This work is motivated by the problem of adaptive target detection in non- 
homogeneous and non-Gaussian interference scenarios when a priori information 
concerning the structure of the interference is available. A typical radar receiver 
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front end consists of an array of antenna elements. The measured data at the 
array arises from an electromagnetic plane wave impinging on the array mani- 
fold. The plane wave induces a voltage at each element of the array, which gives 
rise to the measured data. Given the measured data, the problem of interest is 
to adaptively detect targets against a background of interference consisting of 
clutter, jammer and background noise with unknown covariance matrix. This 
problem for the case of Gaussian interference has received considerable atten- 
tion [8]- [13]. These efforts are based on the inversion of a sample covariance 
matrix which is the maximum likelihood estimate for the case of Gaussian in- 
terference. Sample matrix inversion has a computational cost of 0(M3) where 
M = JN is the spatio-temporal product. Furthermore, positive definiteness 
of the estimated covariance matrix requires K > JN independent, identically 
distributed, representative training data vectors in forming the sample matrix. 
The work of [8] also shows that to obtain performance within 3 dB of the opti- 
mal SNR, K « 2 JN training data vectors are needed. The computational cost 
and training data support requirements become onerous in the limit of large 
JN. Consequently, important issues in present-day STAP processing include 
reduction of computational cost and training data support. 

In many instances, a priori information concerning the interference structure 
may be available. For example, several radar clutter measurements tend to 
support an interference model of the form of a strong low rank component plus 
white background noise. In such instances, significant reduction in training data 
support and computational cost is possible. The principal components inverse 
(PCI) method developed by Tufts [35] provides a useful approach for target 
detection in these scenarios. The main result of [35] is the derivation of the 
PDF for the sum of the squares of the singular values when the signal subspace 
and orthogonal complement space are estimated using finite data. Application 
of the PCI method for adaptive target detection in Gaussian interference can 
be found in [26,27]. In this work, the PCI method is applied to non-Gaussian 
interference described by spherically invariant random processes (SIRP). It is 
seen that PCI performance in SIRP interference degrades severely compared 
to performance in Gaussian interference. This is due to increased subspace 
perturbation caused by the non-ergodicity of the SIRP. 

This work was carried out in collaboration with Prof. Donald Tufts and Mr. 
Brian Freburger of the Electrical Engineering Department of the University of 
Rhode Island. This collaboration was a result of the AFOSR/DSTO meeting 
at Victor Harbour, Australia, June 1997. The main results of this chapter 
were presented in an invited paper at the conference on information sciences 
and systems (CISS), Princeton, NJ, March 1998. This paper is attached to 
the report in Appendix A. The author is most grateful to Prof. Tufts and 
Mr. Freburger for the many stimulating discussions on the PCI method and its 
application to non-Gaussian SIRPs. Since details of the research carried out are 
contained in the paper, the following sections will provide a brief outline of the 
work. 
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5.3    Problem Statement 

We consider the problem of adaptive target detection of a signal known to within 
a multiplicative constant of a steering vector in interference with unknown spec- 
tral characteristics. The hypothesis test used is 

where x denotes the observed complex data vector, s is a known steering vec- 
tor, a is the unknown complex target amplitude, and n is a zero mean complex 
valued interference vector whose covariance matrix R = E[nnH] is typically un- 
known. For this analysis, it is assumed that R = Q + a2l where Q is a low rank 
matrix with large eigenvalues compared to a2. Since R is typically unknown, 
its sample matrix estimate formed from target-free representative training data 
is used. The sample matrix estimate is a maximum likelihood estimate of the 
covariance matrix for Gaussian interference [8] when no restrictions besides the 
postive definite Hermitian condition are imposed on the structure of the covari- 
ance matrix. An M x M sample matrix requires at least K = M independent 
identically distributed, target-free training data to guarantee its positive defi- 
niteness [36]. The work of [8] shows that to obtain an SNR within 3 dB of the 
optimal performance using an estimated covariance matrix, K — 2M training 
data vectors are needed. Furthermore, the sample matrix inversion technique 
of [8]- [13] has a computational complexity of 0(M3). These requirements ren- 
der the sample matrix inversion approach inefficient for structured covariance 
estimation. 

5.4    The PCI Method 

The principal components inverse (PCI) method proposed in [27] and the refer- 
ences therein avoids formation and explicit inversion of the sample covariance 
matrix. We shall see how this is accomplished in the following. Recall that the 
optimal weight vector in the Reed-Mallet-Brennan (RMB) beamformer of [8] is 
given by w = R_1v and the test statistic of the optimal beamformer is simply 
T = |wHx|2 = |sffR-1x|2. Since R is a Hermitian positive definite matrix, it 
admits a representation of the form 

M 

R = WDW" = Y, AiWfwf (5.2) 
i=l 

where Aj and Wj denote the eigenvalues and eigenvectors of R. If R is made up 
of a small number of low rank interferers plus white noise, the representation for 
R = B + CT

2
I takes on the form R = £)*=1(Aj + <72)wjwf + £££fc+1 a

2wfwf, 
where k is the rank of B. Accordingly, R_1 takes on the form 

^E.t^ + D-^wf (5-3) 
= £(I-P) 
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where 

P = EM£ + l)"W (5-4) 
When Aj » a2, the matrix P can be approximated as 

k 

Pw^Wiwf (5.5) 

where k is the rank of B. Note that w;, i = l,2,...fc, are the eigenvectors 
corresponding to the dominant eigenvalues of R. The test statistic of the RMB 
beamformer can be expressed as 

T = |s^-l(I-P)x|2 (5.6) 
<72 

The test statistic can then be interpreted as the energy of the matched filter 
output where the projection of the received data onto the orthogonal comple- 
ment space of the dominant interference space is match filtered with the steering 
vector [27]. 

In practice, R and Wj are unknown and must be estimated from represen- 
tative training data. However, estimation of R is not required to estimate Wj. 
Estimation of w* can be carried out directly using a singular value decompo- 
sition (SVD) of the data matrix of target-free training data [26]. Significant 
computational savings and reduction of training data support result when k is 
small. A key issue in this process is the determination of k. Tufts showed in [35] 
that the sum of the squares of the singular values of the target-free training data 
matrix follows a chi-square distribution. Based on this result, it is possible to 
determine k in a straightforward manner [35]. However since determination of 
k is scenario dependent, it must be carried out on a case-by-case basis. The 
test statistic of the form of eq (5.6) is not CFAR since the SNR produced by 
this test incurs a dependence on the true covariance matrix of the interference 
scenario. In a recent effort, Reed and Gau derived the CFAR version of the PCI 
in [37]. However, this work assumes that a perfect estimate of Wj, i = 1,2,..., k 
and hence, of P is available. Therefore, derivation of a PCI-based CFAR test 
statistic for estimated subspaces is still an open problem. 

Performance of the PCI method is characterized in two ways. The first 
method is based on subspace perturbation. Since, the dominant eigenvectors 
are estimated using finite training data support, the estimated dominant inter- 
ference subspace is viewed as a perturbation of the true dominant subspace [38]. 
Perturbation of the true subspace is reflected by the probability density func- 
tion (PDF) of the sum of the squares of the estimated singular values. A second 
way of characterizing PCI performance is via a subspace swap. In practice, the 
dominant interference subspace is estimated from finite training data. Conse- 
quently, on any given realization, it is likely that a linear combination of the 
orthogonal complement subspace can resolve more energy than an eigenvector 
in the dominant interference space. In such a case, a swap is said to have taken 
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place. Analysis of the swap probability was first carried out in [39]. A lower 
bound on the swap probability was derived in [40]. 

5.5 PCI for Non-Gaussian Interference 

The PCI method was applied to strong low-rank non-Gaussian interference mod- 
eled by a K-distributed SIRP. The PCI test statistic of eq (5.6) is formed and 
then compared to a suitably determined threshold. Since the PDF of the test 
statistic in eq (5.6) for estimated P is unknown in closed form, it is not possible 
to calculate the probability of detection and probability of false alarm in closed 
form or via integral expressions. Hence, performance analysis is carried out 
using Monte Carlo simulations. Details of the simulation are described in [41] 
which is attached as Appendix A of this report. For the case of a known covari- 
ance matrix and hence known P, PCI performance in non-Gaussian interference 
is identical to the performance in Gaussian interference. However, for estimated 
P, PCI performance in non-Gaussian interference degrades significantly com- 
pared to the performance in Gaussian interference particularly for small sample 
sizes and low SNR. This is due to the non-ergodicity of the SIRP. Details of the 
approach, representative examples, and discussion of the results are available 
in [41]. 

5.6 Conclusion 

The PCI method provides a useful technique for overcoming limitations of com- 
putational complexity and training data support for adaptive processing in in- 
terference backgrounds made up of a low-rank component plus white noise. 
However, when applied to non-Gaussian SIRP interference scenarios significant 
performance degradation is encountered. Techniques for overcoming this degra- 
dation can be developed by viewing the PCI method for non-Gaussian SIRPs 
in the framework of an incomplete data problem. Performance restoration to 
within 1 dB of the corresponding PCI performance for Gaussian interference is 
possible. This is an area of future investigation. 
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Chapter 6 

Conclusions 

This effort addressed the problem of adaptive target detection in an interfer- 
ence background made up of clutter, jammer, and background noise. Most clas- 
sical STAP methods are based on sample covariance matrix inversion. These 
methods require considerable amounts of training data for covariance matrix 
estimation and have a computational cost of 0(M3) where M = JN is the 
spatio-temporal product. The performance of these methods degrades severely 
in non-homogeneous/ non-Gaussian interference environments. 

This study investigated techniques for reducing the training data support 
and computational cost of STAP algorithms for non-Gaussian interference sce- 
narios. The key feature of this study was to show that model based parametric 
STAP methods offer the potential for considerable performance improvement by 
reducing training data support. Another important result is the performance 
improvement in non-Gaussian interference scenarios. 

Important issues in the context of transitioning the results of this study into 
ongoing programs at U.S. AFRL such as MCARM and AASP include: 

1. The application of the techniques developed herein to real data. 

2. Account for the effects of platform velocity, crab angle, mutual coupling 
between the atenna array elements, and internal clutter motion. 

3. Carry out detailed investigations of the CFAR properties of the PAMF, 
PCI and other reduced-rank STAP methods. 

4. Analyze the robustness features due to model mismatch. 

These issues will be the subject of investigation in future studies. 
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ABSTRACT 
This paper examines the performance of the Principal Com- 
ponents Inverse (PCI) [12,4,6,5] method of adaptive detec- 
tion in the presence of strong low rank non-Gaussian inter- 
ference. The non-Gaussian interference is generated using a 
spherically invariant random vector model [8, 9,10]. With 
strong interference, near optimal interference suppression 
can be achieved by null projecting the data away from the 
interference subspace. When using the known projection, 
performance is identical for Gaussian and non-Gaussian in- 
terference. However, the performance for non-Gaussian noise 
degrades much faster than the Gaussian performance when 
the projection is estimated. The effect is most noticeable for 
small sample sizes and low signal levels. 

1. PROBLEM STATEMENT 

Consider the problem of detecting a signal of known shape 
but unknown complex amplitude embedded in noise. The 
hypothesis test is 

H0:X   =   N 

Hi-.X   =   aS + N 
(1) 
(2) 

where X is a vector of complex valued data, 5 is a known 
signal shape vector and N is a zero mean complex ran- 
dom vector with covariance matrix R = £(NNH). The 
complex signal amplitude a is assumed to be determinis- 
tic but unknown. Also, assume that R is the combination 
of a strong low rank process and white background noise 
such that R = Q + a1! where Q is low rank with eigen- 
values large compared to a2 . This scenario is typical of 
problems in radar and active sonar where X represents a 
spatial/temporal sampling. 

In the case of unknown R, it is typically assumed that 
there exists a set of secondary data which can be used to 
estimate the covariance. The method of Principal Compo- 
nents Inverse (PCI) is often employed for adaptive detec- 
tion in this scenario when the interference model is Gaus- 
sian. However, often the interference is not Gaussian, and 

Dr. Tufts and Mr. Freburger were supported by ONR under U.S. Navy 
contract no: N000149610938 

Dr. Rangaswamy was supported by the AFOSR under U.S. Air Force 
Research Laboratory contract no: F-30602-97-C-0050 

the performance of applying this detection method needs to 
be characterized for non-Gaussian interference. 

2. NON-GAUSSIAN NOISE MODEL 

In the above, the white background noise associated with 
the <r27 portion of the covariance will be assumed to al- 
ways be zero mean Gaussian. The portion associated with Q 
may often be from a non-Gaussian process. Non-Gaussian 
noise/disturbance phenomena have been reported in appli- 
cations like radar, sonar, digital communications, and ra- 
dio astronomy. Most of the analysis in these applications 
is based on the assumption of independent identically dis- 
tributed random variables. However, this assumption fails in 
many instances. For example, coherent processing in radars 
operating at a high pulse repetition frequency (PRF) results 
in successive radar returns (pulses) being highly correlated. 
Consequently, it is necessary to describe the joint probabil- 
ity density of N correlated non-Gaussian random variables. 
It must be noted that unlike the Gaussian case, the PDF of 
N correlated non-Gaussian random variables is not unique. 
This is due to the large number of ubiquitous higher order 
dependencies. However, only the first order PDF and cor- 
relation function can be readily measured in practice. Thus, 
there is considerable practical merit to a mechanism which 
affords the specification of the joint PDF of N correlated 
non-Gaussian random variables based on the first order PDF 
and a covariance matrix. SIRPs are the only known class 
of processes which permit such a specification. SIRPs are 
the multivariate extension of compound models which have 
been found to satisfactorily account for the first order PDF 
of experimentally measured terrain and sea clutter which 
exhibit spiky or impulsive behavior. 

We present definitions and relevant mathematical pre- 
liminaries for complex-SIRVs and complex-SIRPs in this 
section. A zero mean random vector Y = Yc+j Ys, where 
Yc = \YcU Yc2, ...,YcN]TwdYB = [Ysl, y.2) ...,Y,N]T 

denote the vectors of the in-phase and out-of-phase quadra- 
ture components, is a complex-SIRV if its PDF has the form 

/*(y) = (^-"m-'htNip) (3) 
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where p = yHS 1y, XI is a non-negative definite Hermi- 
tian matrix, and /i2w(.) is a positive, real valued, monoton- 



ically decreasing function for all N. If every random vector 
obtained by sampling a complex random process, y(t), is 
a complex-SIRV, regardless of the sampling instants or the 
number of samples, then the process y(t) is defined to be a 
complex SIRP. 

Yao in [15] derived a representation theorem for real 
SIRVs. The representation theorem extends to complex- 
SIRVs readily and is stated as follows. 

The random vector Y is a complex-SIRV if and only if it 
is equivalent to the product of a complex-Gaussian random 
vector Z and a non-negative random variable V with PDF 
fv(v), defined to be the characteristic PDF of the complex- 
SIRV. 

Consequently, 

3.2. Gaussian Based Development 

Assume the scenario as given in the problem statement of 
section 1.. The noise whitened matched filter can be written 
in two equivalent forms [3]. 

\SHR-1X\ = ±\SH(I-PW)X\ 

where Pw is a weighted projection matrix given by 

Ajb 

fc=l 

(9) 

(10) 

Y = ZV 

h*N(p) = f~v-™exp(-$)Mv)dv. 

(4) 

It is assumed without loss of generality that £?(V2) = 1 
so that the covariance matrix of the complex-SIRV is equal 
to that of the complex-Gaussian random vector. Due to 
the assumption JS(V2) = 1, the covariance matrix of the 
complex-SIRV is £. 

The representation theorem and the assumption that 2?(V2) 
1, give rise to the following necessary and sufficient condi- 
tions for representing Y as a complex-SIRV 

E{Yc}=E{Y.}=0 
SCc = EM 

Sc = — £«:■ 

where 

= 2?{YCY*} 
= E{YCY?} 

V„ = E{Y.Y?} 
S.C = E{Y.YJ}. 

Under these conditions, it follows that 

(5) 

(6) 

(7) 

where Qk is the kth singular vector of Q and A* is the as- 
sociated singular value. 

The Sample Matrix Inverse (SMI) method estimates R 
with R = j? SfcLi XkXk  m^ uses *'s in *e test 8'ven 

by 
|SÄÄ_1JC| (11) 

The PQ method takes the approach of estimating Pw and 
using 

\S"(I-PVI)X\^\SH(X-PV1X)\ (12) 

If we further assume that the low rank portion of the noise 
is much stronger then the part of the noise that is white then 
for a Q matrix of rank r we have 

Afc »<r3forl> A;>randAfc«OforA;>r      (13) 

and the weighted projection can be well approximated by a 
standard projection matrix 

Pw*P = YjQkQ% (14) 
fc=i 

Several attractive properties of complex-Gaussian ran- 
dom vectors generalize to complex-SIRVs as a consequence 
of the representation theorem. Complex-SIRVs satisfying 
the conditions of eq (5) are also called SIRVs of the circu- 
lar class [7]. An important property of complex-SIRVs of 
the circular class is the linearity of estimators in minimum 
mean square error estimation (MMSE) problems [7]. 

3. PRINCIPAL COMPONENTS INVERSE (PCI) 

3.1. Optimum Detector 

When the signal is embedded in noise which has a multivari- 
ate Gaussian probability distribution with zero mean vector 
and known covariance matrix R, then the maximum signal 
to noise ratio test statistic [2] is a function of the magnitude 
of the output of a noise whitening matched filter [1] 

The PCI method can then be summarized as estimate the 
singular vectors, Qk, and use 

\S"(I-J2QkQH)X\ (15) 
fc=i 

If a matrix of the data snapshots is formed 

X=[Xx   X2   ■■■   XK ] (16) 

then the left singular vectors of R and the matrix X are the 
same and the singular vectors, Qk, can be calculated di- 
rectly from the data matrix X. 

3.3. Rank Selection Strategy 

One of the goals of the PCI method is that under condi- 
tions of no strong interference, the waveforms should pass 
through the PCI processing unchanged. To this end, a thresh- 
old value, T, is set which is compared to the partial sums of 
the singular values of the data matrix. That is, assuming the 
singular values to be in descending order, o\ > <r2 • • • > 
aN we seek the smallest S,Smin for which 

IS^RT1*! (8) E°N-*>T (17) 
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= [ü. 1 u0] (18) 

= [tfl • ••  ur i Ur+l     ■ ••   Uit ](19) 

The rank is then chosen as r = N — Smin where N is the 
row dimension of the space-time data matrix and T is the 
threshold value. When the value of 5mjn = N then the rank 
is chosen as 0 and the PCI processing is turned off so that 
no interference suppression is performed. The threshold is 
chosen such that low level noise and the max expected target 
level (which is usually range dependent) will be within the 
threshold T. This choice satisfies the previously stated goal 
of passing the antenna waveforms unchanged in the absence 
of strong jamming. 

3.4. PCI Performance 

The performance of the PCI method can be characterized 
in two ways. The first is called a subspace swap [13, 11]. 
In the case where we have the notion of a correct interfer- 
ence rank, separate the eigenvectors of the covariance ma- 
trix R = UAUtf into interference eigenvectors and or- 
thogonal eigenvectors 

U 

where 17* is the eigenvector associated with the kth largest 
eigenvalue. For a given realization of the data matrix, one 
expects the energy to be greater in the direction of the eigen- 
vectors of the interference subspace than in the direction of 
any linear combination of the eigenvectors of the orthogo- 
nal subspace. Since any unit length vector in the orthogonal 
subspace can be expanded as U0a we have, 

\UiU?X[\F > sup \\U„aaHU?X\\F forx = 1 • • -r 
|a|=l 

(20) 
However, because of fluctuations in finite observations of 
data, it can happen that a linear combination of the eigen- 
vectors in the orthogonal space resolves more energy than 
a eigenvector in the signal space. This is called a subspace 
swap and is associated with a rapid degradation in the per- 
formance of SVD based algorithms [13]. 

When a subspace swap does not occur, the estimated 
subspace can be viewed as a perturbation of the true sub- 
space. Let the matrix of background noise realizations be 
viewed as a perturbation such that the noise matrix N = 
[ iVi N2 ••• NK ] can be written as N = Z + W 
where Z is the low rank interference and W is the back- 
ground Gaussian noise. Letting the SVD of Z be 

GENERATION OF AN SIRV 

Z = [ us  u„ ] 0 
0 

[V,   V0 ]      (21) 

the PCI projection matrix can be approximated by [14] 

(I-P)«(Uo+U.A)(U0 + U.A)"       (22) 

where A is given by 

COMPUTE 
COVARIANCE R 
OF GIVEN 
SCENARIO 

C 

1/2 

R x 
N(0,R) 

\    ^      SIRV(0,R,fv(v)) 
GENERATE 
N(0,l) 
VECTOR 

> I &> 

V 

GENERATE 
RANDOM VARIABLE 
ACCORDING TO 

A = -XT^Vf W"V0 (23) 
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Figure 1: Block Diagram for Generation of an SIRV 

4. SIMULATIONS 

4.1. Noise Generation 

The generation of the Gaussian and non-Gaussian noise is 
performed as shown in Figure 1. An independent realization 
of a Gaussian vector with independent elements is generated 
and then colored based upon the covariance of the chosen 
scenario. To produce the SIRV, an independent realization 
is drawn form the characteristic PDF and used to scale the 
random vector. 

4.2. Simulation Steps 

The steps of the simulation are illustrated in Figure 2. First, 
a set of K signal free independent vectors from the Gaus- 
sian and non-Gaussian interference scenarios are generated 
as described above. Note that the Gaussian and SIRV inter- 
ference span the identical subspace. Background Gaussian 
noise is then added to these realizations after which a PCI 
weight vector is calculated for both the Gaussian and SIRV 
cases. For these simulations it was assumed that the rank 
of the interference was known. Another independent signal 
free Gaussian and non-Gaussian interference realization is 
generated with background noise added. The PCI weight 
vectors are applied to their respective interference types to 
compute an output sample under the HO assumption. A sig- 
nal, aS is then added and weight vectors applied to obtain 
a sample under the HI condition. These steps are repeated 
for each trial of the simulation. False alarm thresholds are 
then set using percentages of the data generated under the 
HO assumption. 

4.3. PCI Performance 

For the purpose of simulation we consider a 16 element ar- 
ray with two jammers located at —10 and +10 degrees rel- 
ative to broadside. The desired target is assumed to be at 
broadside. The jammers each have a power level of +20dB 
relative to the background noise which is always white Gaus- 
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sian. The jammer signals are taken to be independent, iden- 
tically distributed Gaussian or Spherically Invariant Ran- 
dom vectors with the same covariance matrix. A Gamma 
characteristic PDF is used for the SIRV considered. 

In the case of strong interference, the optimum Gaus- 
sian detector for known statistics is essentially a projection 
onto the null space of the interference. Since an SIRV with 
the same covariance matrix occupies the same subspace, 
this detector will have almost identical performance for the 
Gaussian and Non-Gaussian case. This is demonstrated in 
Figure 3 by letting the training sample size grow large and 
noting that all cases converge to one level of performance. 
Plotted is the probability of detection verses input signal 
level for PCI on Gaussian data (PCI Gauss) and PCI on non- 
Gaussian data (PCI NG) with a false alarm rate of .01 de- 
termined from the data generated under the HO assumption. 
Also, the optimum Gaussian performance (OPT Gauss) is 
plotted for comparison (PCI Gauss-NG will be discussed 
later). 
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Figure 4: PD verses Signal Level for Gaussian and Non- 
Gaussian with Gamma Characteristic PDF, Sample Size = 
16, a = .5 
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Figure 5: PD verses Signal Level for Gaussian and Non- 
Gaussian with Gamma Characteristic PDF, Sample Size = 
8, a = .5 

Figure 4 shows the probability of detection verses input 
signal level for a smaller set of training samples. Sixteen 
signal free vector samples were used to compute an estimate 
of the PCI weight vector. With 16 samples for training, the 
performance of PCI is near the performance of the Gaus- 
sian detector of known statistics and there is only a small 
degradation for the non-Gaussian interference. 

Figures 5 and 6 shows the PD curve for the case of 8 and 
4 training samples. The performance of PCI on the Gaus- 
sian interference shows some degradation compared to the 
16 sample training set. The performance of PCI on the non- 
Gaussian interference shows a more pronounced degrada- 
tion than in the Gaussian case. 

4.4. Discussion of Results 

If the interference is strong and no assumptions are made 
about the strength of the signal then the performance of 
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Figure 6: PD verses Signal Level for Gaussian and Non- 
Gaussian with Gamma Characteristic PDF, Sample Size = 
4, a = .5 

using a projection will be identical for Gaussian or non- 
Gaussian interference. When the subspace is estimated, per- 
formance degrades as residual interference is allowed to pass 
through the projection matrix. The degradation will de- 
pend on the accuracy of the estimated subspace and the type 
of interference that is allowed to pass (Gaussian or non- 
Gaussian). Refer now to the PCI Gauss-NG points of Fig- 
ure 5 and 6. These points were determined by computing 
the projection matrix using Gaussian interference training 
samples but then performing detection on the non-Gaussian 
interference. With moderate signal levels, the performance 
approaches that of the Gaussian case; the estimation of the 
projection matrix is the dominant factor in determining per- 
formance and the type of residual interference is less sig- 
nificant. For low signal levels, the more accurate projection 
estimation provides less of a performance increase. 

The performance of PCI for moderate signal levels can 
be characterized by how well the subspace can be estimated 
in the presence of the different interference models. When 
the interference is Gaussian, the elements of £« in equa- 
tion 23 are distributed as a scaled X\K where K is the num- 
ber of training samples. The terms W and U0 will be the 
same for Gaussian and non-Gaussian interference, and the 
V, term will be statistically identical since each realization 
is independent. Therefore, the only difference lies in the 
distribution of the elements of £,. Figures 7 and 8 show the 
histogram of the largest singular value for the non-Gaussian 
training data of the 128 and 4 sample cases respectively. 
Overlayed on each is the x2 distribution for Gaussian in- 
terference. The histograms are more spread than the Gaus- 
sian interference and for the smaller sample size the spread 
is skewed more to the smaller values. Also, note that the 
peak of the histogram is more left of the x2 overlay for the 
smaller sample size. Thus one can expect a higher percent- 
age of larger perturbations with the non-Gaussian data than 
the Gaussian. It should be noted that there were no subspace 
swaps with either training size for the Gaussian interference 
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Figure 7: Distribution of Largest Singular Value Gamma 
Characteristic PDF, Sample Size = 16, a = .5 
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Figure 8: Distribution of Largest Singular Value Gamma 
Characteristic PDF, Sample Size = 8, a = .5 

and only a very small (~ 1%) number of swaps for the sam- 
ple size of 4 with the non-Gaussian interference. This was 
not significant enough to effect the detection curves. 

5. CONCLUSIONS 

In the case of moderate to large sample size for secondary 
data, the Gaussian performance of the PCI method for strong 
low rank interference will be maintained for non-Gaussian 
SIRV interference. However, as the sample size decreases, 
the performance in non-Gaussian interference degrades faster 
than for Gaussian interference. For moderate to large sig- 
nal levels, this degradation can be attributed to poorer es- 
timation of the projection matrix which is the result of a 
larger spread in the distribution of the singular values of the 
secondary data matrix. In particular, the non-Gaussian sin- 
gular values are more likely to be smaller than those from 
Gaussian data. The extent to which this is true will be a 
function of the characteristic PDF used to describe the non- 



Gaussian SIRV. For lower signal levels, the non-Gaussian 
nature of the residual interference limits the performance. 
Future work should include possible remedies for robust es- 
timation of the projection matrix when the interference is 
may be non-Gaussian. 
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